To view these instructions on the plotter page, click

Content:

Syntax

Constants

Functions

Basic functions

Trigonometric and hyperbolic functions

Non-differentiable functions

Probability functions and statistics

Special functions

Programmable functions

Iterations & fractals

Differential and integral equations

Adjust the display

Calculate single value

Load & Save

Gimmicks & Fun

With openPlaG mathematical function graphs can be drawn. Up to three graphs can be shown in one image. For this, input fields for three formulas are available. For the proper use of the plotter, it is advisable to activate JavaScript.

Very large numbers can be written like

Up

Up

Up

Up

sin Sine, sinus, e.g. sin(x)cos Cosine, cosinus, e.g. cos(x)tan Tangent, e.g. tan(x)cot Cotangent, e.g. cot(x)sec Secant, e.g. sec(x)cosec Cosecant, e.g. cosec(x)sin2 Sine square, e.g. sin2(x)cos2 Cosine square, e.g. cos2(x)tan2 Tangent square, e.g. tan2(x)cot2 Cotangent square, e.g. cot2(x)sec2 Secant square, e.g. sec2(x)cosec2 Cosecant square, e.g. cosec2(x)arcsin Arcsine, e.g. arcsin(x)arccos Arccosine, e.g. arccos(x)arctan Arctangent, e.g. arctan(x)arccot Arccotangent, e.g. arccot(x)arcsec Arcsecant, e.g. arcsec(x)arccosec Arccosecant, e.g. arccosec(x) |
sinh Hyperbolic Sine, e.g. sinh(x)cosh Hyperbolic Cosine, e.g. cosh(x)tanh Hyperbolic Tangent, e.g. tanh(x)coth Hyperbolic Cotangent, e.g. coth(x)arsinh Area Hyperbolic Sine, e.g. arsinh(x)arcosh Area Hyperbolic Cosine, e.g. arcosh(x)artanh Area Hyperbolic Tangent, e.g. artanh(x)arcoth Area Hyperbolic Cotangent, e.g. arcoth(x)sech Hyperbolic Secant, e.g. sech(x)cosech Hyperbolic Cosecant, e.g. cosech(x)arsech Area Hyperbolic Secant, e.g. arsech(x)arcosech Area Hyperbolic Cosecant, e.g. arcosech(x) |

Up

Up

Up

Up

Up

Up

D or D1 First derivative, e.g. D(x*x)D2 Second derivative, e.g. D2(x^3)D3 Third derivative, e.g. D3(x^4) |
D0 or D01 First derivative, alternative form, e.g. D0(x*x)D02 Second derivative, alternative form, e.g. D02(x^3)D03 Third derivative, alternative form, e.g. D03(x^4) |

Derivative of fourth order over a whole function can be generated by using D3 together with selecting 'Derivative' in the display or by writing e.g.

Integrals within a function are written like this:

Integral of fourth order over a whole function can be generated by using S3 together with selecting 'Integral' in the display.

Up

You can pick

Next to the formula terms, the

At

The arrow keys

The

At

In the next line you can define the

You can also decide, whether lines and caption should be drawn in the background or in the foreground or not at all.

At

At

At

At

Up

Enter several values, separated by spaces (e.g. 1 2 3 4 5), to get a score table. Press

This tool can also be used as a pocket calculator. Simply enter an arithmetic term like

Up

Up

To view the examples, copy the code in the

a0=2&a1=Q&a2=Q&a3=Q*5&a4=5&a5=3&a6=0&a7=&a8=&a9=&b0=500&b1=500&b2=-5&b3=5&b4=-5&b5=5&b6=10&b7=10&b8=5&b9=5&c0=3&c1=0&c2=1&c3=1&c4=1&c5=&c6=1&c7=0&c8=0&c9=0&d0=1&d1=20&d2=20&d3=0&d4=&d5=&d6=&d7=&d8=&d9=&e0=&e1=&e2=&e3=rand2(-5#5#3)&e4=13&e5=14&e6=13&e7=12&e8=1&e9=1&f0=1&f1=1&f2=1&f3=-80&f4=-50&f5=&f6=&f7=&f8=&f9=&g0=&g1=0&g2=1&g3=0&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

a0=2&a1=-pow(x#2)+9&a2=-pow(x-.3#2)+5&a3=&a4=5&a5=13&a6=8&a7=&a8=&a9=1&b0=500&b1=500&b2=-5&b3=5&b4=0&b5=10&b6=10&b7=10&b8=5&b9=5&c0=3&c1=0&c2=1&c3=1&c4=1&c5=1&c6=1&c7=0&c8=0&c9=0&d0=1&d1=20&d2=20&d3=0&d4=&d5=&d6=&d7=&d8=&d9=&e0=&e1=&e2=&e3=&e4=13&e5=14&e6=13&e7=12&e8=2&e9=2&f0=0&f1=1&f2=1&f3=0&f4=0&f5=&f6=1&f7=&f8=&f9=&g0=&g1=0&g2=1&g3=0&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

a0=2&a1=cat(2*(sqr(abs(x))-x/8)#x)&a2=6&a3=rand2(-2#0#2)&a4=1&a5=1&a6=9&a7=&a8=&a9=&b0=500&b1=500&b2=-5&b3=5&b4=-2&b5=8&b6=10&b7=10&b8=5&b9=5&c0=3&c1=0&c2=&c3=&c4=&c5=1&c6=1&c7=0&c8=0&c9=0&d0=1&d1=50&d2=50&d3=0&d4=&d5=&d6=&d7=&d8=&d9=&e0=&e1=&e2=&e3=&e4=18&e5=6&e6=13&e7=1&e8=2&e9=3&f0=0&f1=1&f2=1&f3=0&f4=0&f5=&f6=&f7=&f8=&f9=&g0=&g1=1&g2=1&g3=0&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

a0=2&a1=x&a2=abs(x)^.9*sig(x)&a3=-(x/25)^3&a4=17&a5=37&a6=17&a7=&a8=&a9=&b0=500&b1=500&b2=-1000&b3=1000&b4=-1000&b5=1000&b6=10&b7=10&b8=5&b9=5&c0=3&c1=30&c2=&c3=&c4=&c5=&c6=&c7=0&c8=0&c9=0&d0=1&d1=10&d2=10&d3=0&d4=&d5=&d6=&d7=&d8=-120&d9=120&e0=&e1=&e2=&e3=&e4=37&e5=13&e6=13&e7=37&e8=2&e9=2&f0=2&f1=1&f2=1&f3=0&f4=0&f5=&f6=&f7=&f8=&f9=&g0=&g1=2&g2=1&g3=90&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

a0=2&a1=2^x&a2=x^2&a3=-200*x+3000&a4=6&a5=13&a6=13&a7=&a8=&a9=&b0=400&b1=400&b2=4&b3=15&b4=20&b5=1010&b6=10&b7=10&b8=5&b9=5&c0=3&c1=0&c2=&c3=&c4=&c5=&c6=&c7=0&c8=0&c9=0&d0=1&d1=20&d2=20&d3=0&d4=&d5=&d6=&d7=&d8=&d9=&e0=&e1=&e2=&e3=&e4=13&e5=14&e6=11&e7=11&e8=2&e9=2&f0=3&f1=&f2=1&f3=0&f4=0&f5=&f6=1&f7=&f8=&f9=&g0=&g1=1&g2=1&g3=35&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

a0=2&a1=prime(x)&a2=x-25&a3=x-300&a4=4&a5=3&a6=38&a7=&a8=&a9=&b0=500&b1=500&b2=500&b3=0&b4=0&b5=500&b6=10&b7=10&b8=5&b9=5&c0=3&c1=0&c2=1&c3=1&c4=1&c5=&c6=1&c7=0&c8=0&c9=0&d0=&d1=20&d2=20&d3=0&d4=&d5=&d6=&d7=&d8=&d9=&e0=&e1=&e2=&e3=&e4=38&e5=14&e6=21&e7=1&e8=2&e9=2&f0=2&f1=1&f2=1&f3=0&f4=0&f5=&f6=&f7=&f8=&f9=&g0=&g1=0&g2=1&g3=140&g4=0&g5=0&g6=Y&g7=ffffff&g8=ffffff&g9=ffffff&h0=1&h1=&h2=&h3=&h4=0&z

Up